Politics

/

ArcaMax

Commentary: Avoiding policy malpractice in the age of AI

Kevin Frazier, The Fulcrum on

Published in Op Eds

Nature abhors a vacuum, rushing to fill it often chaotically. Policymakers, similarly, dislike a regulatory void. The urge to fill it with new laws is strong, frequently leading to shortsighted legislation. There's a common, if flawed, belief that "any law is better than no law." This action bias—our predisposition to do something rather than nothing—might be forgivable in some contexts, but not when it comes to artificial intelligence.

Regardless of one's stance on AI regulation, we should all agree that only effective policy deserves to stay on the books. The consequences of missteps in AI policy at this early stage are too severe to entrench poorly designed proposals into law. Once enacted, laws tend to persist. We even have a term for them: zombie laws. These are "statutes, regulations, and judicial precedents that continue to apply after their underlying economic and legal bases dissipate," as defined by Professor Joshua Macey.

Such laws are more common than we’d like to admit. Consider a regulation requiring truck drivers to place visibility triangles around their rigs when parked. This seemingly minor rule becomes a barrier to autonomous trucking, as there's no driver to deploy the triangles. A simple, commonsense solution, like integrating high-visibility markers into the trucks themselves, exists, yet the outdated regulation persists. Another example is the FDA's attempt to help allergy sufferers by requiring sesame labeling. Rather than simply labeling, many food producers responded by adding sesame to more foods to avoid non-compliance, a comical and wasteful regulatory backfire.

Similar legislative missteps are highly likely in the AI space. With Congress declining to impose a moratorium, state legislatures across the country are rapidly pursuing AI proposals. Hundreds of AI-related bills are pending, addressing everything from broad, catastrophic harms to specific issues such as deepfakes in elections.

The odds of any of these bills getting it "right" are uncertain. AI is a particularly challenging technology to regulate for several reasons: even its creators aren't sure how and why their models behave; early adopters are still figuring out AI’s utility and limitations; no one can predict how current regulations will influence AI's development; and we're left guessing how adversaries will approach similar regulatory questions.

Given these complexities, legislators must adopt a posture of regulatory humility. States that enact well-intentioned regulations leading to predictable negative consequences are engaging in legislative malpractice. I choose these words deliberately. Policymakers and their staff should know better, recognizing the extensive list of tools available to prevent bad laws from becoming permanent.

Malpractice occurs when a professional fails to adhere to the basic tenets of their field. Legal malpractice, for instance, involves "evil practice in a professional capacity, and the resort to methods and practices unsanctioned and prohibited by law." In medicine, doctors are held to a standard of care reflecting what a "minimally competent physician in the same field would do under similar circumstances."

While policymaking lacks a formalized duty of care or professional conduct code, we're not entirely without guidance. A related concept, though less familiar, offers a starting point: maladministration.

Maladministration encompasses "administrative action (or inaction) based on or influenced by improper considerations or conduct," indicating when "things are going wrong, mistakes are being made, and justifiable grievances are being ignored." While typically applied to administrative agencies and politicians, as the creators of such systems, they bear responsibility for anticipating and correcting these mistakes.

 

Given the inherent difficulties of regulating AI, policymakers should, at a minimum, demonstrate consideration of three key tools to reduce the odds of enacting misguided regulations. These tools align with core democratic values, ensuring policy promotes the common good.

First is experimental policy design via randomized control trials (RCTs). Legislators shouldn't assume one best way to test AI models or report their training. Instead, they should build experimentation into legislation. Some labs might follow steps A, B, and C, while others follow X, Y, and Z. The legislature can then assess which provisions work best, ideally transitioning all regulated entities to superior practices or amending the law. This fosters innovation in regulatory methods.

Second are sunrise clauses. These delay enforcement until prerequisites—basic conditions of good governance—are met. Unlike a simple future effective date, a true sunrise clause imposes a checklist: Is the implementing agency staffed and funded? Have regulated entities been consulted? Do stakeholders understand compliance? In AI policy, these questions are urgent. Enforcing complex laws before infrastructure exists is inefficient and undermines legitimacy. A sunrise clause ensures laws "land" effectively, demanding competence before policy becomes an enforceable rule. This promotes transparency and accountability.

Third are sunset clauses. If sunrise clauses delay a start, sunset clauses enforce an end unless actively renewed. This is critical for fast-evolving technologies. A sunset clause builds in mandatory reassessment: "This law expires in two years unless renewed." This isn't laziness; it’s disciplined humility. AI regulation shouldn't outlive its usefulness, and sunset clauses ensure laws earn their permanence, preventing outdated assumptions from locking in.

The stakes of AI policymaking are too high and the risks of getting it wrong are too enduring for lawmakers to legislate on instinct alone. While action bias is human, embedding it in law is neither excusable nor sustainable. At this early, uncertain stage of AI development, policymakers have a rare opportunity: to regulate with foresight, humility, and discipline.

_____

Kevin Frazier is an AI Innovation and Law Fellow at Texas Law and Author of the Appleseed AI substack.

_____


©2025 The Fulcrum. Visit at thefulcrum.us. Distributed by Tribune Content Agency, LLC.

 

Comments

blog comments powered by Disqus

 

Related Channels

The ACLU

ACLU

By The ACLU
Amy Goodman

Amy Goodman

By Amy Goodman
Armstrong Williams

Armstrong Williams

By Armstrong Williams
Austin Bay

Austin Bay

By Austin Bay
Ben Shapiro

Ben Shapiro

By Ben Shapiro
Betsy McCaughey

Betsy McCaughey

By Betsy McCaughey
Bill Press

Bill Press

By Bill Press
Bonnie Jean Feldkamp

Bonnie Jean Feldkamp

By Bonnie Jean Feldkamp
Cal Thomas

Cal Thomas

By Cal Thomas
Christine Flowers

Christine Flowers

By Christine Flowers
Clarence Page

Clarence Page

By Clarence Page
Danny Tyree

Danny Tyree

By Danny Tyree
David Harsanyi

David Harsanyi

By David Harsanyi
Debra Saunders

Debra Saunders

By Debra Saunders
Dennis Prager

Dennis Prager

By Dennis Prager
Dick Polman

Dick Polman

By Dick Polman
Erick Erickson

Erick Erickson

By Erick Erickson
Froma Harrop

Froma Harrop

By Froma Harrop
Jacob Sullum

Jacob Sullum

By Jacob Sullum
Jamie Stiehm

Jamie Stiehm

By Jamie Stiehm
Jeff Robbins

Jeff Robbins

By Jeff Robbins
Jessica Johnson

Jessica Johnson

By Jessica Johnson
Jim Hightower

Jim Hightower

By Jim Hightower
Joe Conason

Joe Conason

By Joe Conason
Joe Guzzardi

Joe Guzzardi

By Joe Guzzardi
John Micek

John Micek

By John Micek
John Stossel

John Stossel

By John Stossel
Josh Hammer

Josh Hammer

By Josh Hammer
Judge Andrew P. Napolitano

Judge Andrew Napolitano

By Judge Andrew P. Napolitano
Laura Hollis

Laura Hollis

By Laura Hollis
Marc Munroe Dion

Marc Munroe Dion

By Marc Munroe Dion
Michael Barone

Michael Barone

By Michael Barone
Mona Charen

Mona Charen

By Mona Charen
Rachel Marsden

Rachel Marsden

By Rachel Marsden
Rich Lowry

Rich Lowry

By Rich Lowry
Robert B. Reich

Robert B. Reich

By Robert B. Reich
Ruben Navarrett Jr.

Ruben Navarrett Jr

By Ruben Navarrett Jr.
Ruth Marcus

Ruth Marcus

By Ruth Marcus
S.E. Cupp

S.E. Cupp

By S.E. Cupp
Salena Zito

Salena Zito

By Salena Zito
Star Parker

Star Parker

By Star Parker
Stephen Moore

Stephen Moore

By Stephen Moore
Susan Estrich

Susan Estrich

By Susan Estrich
Ted Rall

Ted Rall

By Ted Rall
Terence P. Jeffrey

Terence P. Jeffrey

By Terence P. Jeffrey
Tim Graham

Tim Graham

By Tim Graham
Tom Purcell

Tom Purcell

By Tom Purcell
Veronique de Rugy

Veronique de Rugy

By Veronique de Rugy
Victor Joecks

Victor Joecks

By Victor Joecks
Wayne Allyn Root

Wayne Allyn Root

By Wayne Allyn Root

Comics

Jon Russo Pat Bagley Michael Ramirez Pedro X. Molina Phil Hands John Branch